Ragefish.ru

Какие бывают сети

Виды компьютерных сетей (стр. 1 из 2)

БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

МЕЖДУНАРОДНЫЙ ИНСТИТУТ ДИСТАНЦИОННОГО ОБРАЗОВАНИЯ

ПО УЧЕБНОЙ ДИСЦИПЛИНЕ: Компьютерные сети

Виды компьютерных сетей

Компьютерные сети можно классифицировать по различным признакам.

I. По принципам управления:

1. Одноранговые – не имеющие выделенного сервера. В которой функции управления поочередно передаются от одной рабочей станции к другой;

2. Многоранговые – это сеть, в состав которой входят один или несколько выделенных серверов. Остальные компьютеры такой сети (рабочие станции) выступают в роли клиентов.

II. По способу соединения:

1. “Прямое соединение“- два персональных компьютера соединяются отрезком кабеля. Это позволяет одному компьютеров (ведущему) получить доступ к ресурсам другого (ведомого);

2. “Общая шина” – подключение компьютеров к одному кабелю;

3. “Звезда” – соединение через центральный узел;

4. “Кольцо” – последовательное соединение ПК по двум направлениям.

III. По охвату территории:

1. Локальная сеть (сеть, в которой компьютеры расположены на расстоянии до километра и обычно соединены при помощи скоростных линий связи.) – 0,1 – 1,0 км; Узлы ЛВС находятся в пределах одной комнаты, этажа, здания.

2. Корпоративная сеть (в пределах находятся в пределах одной организации, фирмы, завода). Количество узлов в КВС может достигать нескольких сотен. При этом в состав корпоративной сети обычно входят не только персональные компьютеры, но и мощные ЭВМ, а также различное технологическое оборудование (роботы, сборочные линии и т.п.).

Корпоративная сеть позволяет облегчить руководство предприятием и управление технологическим процессом, установить четкий контроль за информационными и производственными ресурсами.

3. Глобальная сеть (сеть, элементы которой удалены друг от друга на значительное расстояние) – до 1000 км.

В качестве линий связи в глобальных сетях используются как специально проложенные (например, трансатлантический оптоволоконный кабель), так и существующие линии связи (например, телефонные сети). Количество узлов в ГВС может достигать десятков миллионов. В состав глобальной сети входят отдельные локальные и корпоративные сети.

4. Всемирная сеть – объединение глобальных сетей (Internet).

ТОПОЛОГИЯ КОМПЬЮТЕРНЫХ СЕТЕЙ

Топология сети – геометрическая форма и физическое расположение компьютеров по отношению к друг другу. Топология сети позволяет сравнивать и классифицировать различные сети. Различают три основных вида топологии:

Эта топология использует один передающий канал на базе коаксиального кабеля, называемый “шиной”. Все сетевые компьютеры присоединяются напрямую к шине. На концах кабеля-шины устанавливаются специальные заглушки – “терминаторы” (terminator). Они необходимы для того, чтобы погасить сигнал после прохождения по шине. К недостаткам топологии “Шина” следует отнести следующее:

•данные, предаваемые по кабелю, доступны всем подключенным компьютерам;

•в случае повреждения “шины” вся сеть перестает функционировать.

Для топологии кольцо характерно отсутствие конечных точек соединения; сеть замкнута, образуя неразрывное кольцо, по которому передаются данные. Эта топология подразумевает следующий механизм передачи: данные передаются последовательно от одного компьютера к другому, пока не достигнут компьютера-получателя. Недостатки топологии “кольцо” те же, то и у топологии “шина”:

•неустойчивость к повреждениям кабельной системы.

В сети с топологией “звезда” все компьютеры соединены со специальным устройством, называемым сетевым концентратором или “хабом” (hub), который выполняет функции распределения данных. Прямые соединения двух компьютеров в сети отсутствуют. Благодаря этому, имеется возможность решения проблемы общедоступности данных, а также повышается устойчивость к повреждениям кабельной системы. Однако функциональность сети зависит от состояния сетевого концентратора.

Методы доступа к несущей в компьютерных сетях

В различных сетях существуют различные процедуры обмена данными между рабочими станциями.

Международный институт инженеров по электротехнике и радиоэлектронике (Institute of Electrical and Electronics Engineers – IEEE) разработал стандарты (IEEE802.3, IEEE802.4 и IEEE802.5), которые описывают методы доступа к сетевым каналам данных.

Наибольшее распространение получили конкретные реализации методов доступа: Ethernet, ArcNet и Token Ring. Эти реализации основаны соответственно на стандартах IEEE802.3, IEEE802.4 и IEEE802.5.

Метод доступа Ethernet

Этот метод доступа, разработанный фирмой Xerox в 1975 году, пользуется наибольшей популярностью. Он обеспечивает высокую скорость передачи данных и надежность.

Для данного метода доступа используется топология “общая шина”. Поэтому сообщение, отправляемое одной рабочей станцией, принимается одновременно всеми остальными станциями, подключенными к общей шине. Но сообщение предназначено только для одной станции (оно включает в себя адрес станции назначения и адрес отправителя). Та станция, которой предназначено сообщение, принимает его, остальные игнорируют.

Читать еще:  Наживка для ловли карпа

Метод доступа Ethernet является методом множественного доступа с прослушиванием несущей и разрешением конфликтов, называемых коллизиями (CSMA/CD -Carter Sense Multiple Access with Collision Detection).

Перед началом передачи рабочая станция определяет, свободен канал или занят. Если канал свободен, станция начинает передачу.

Ethernet не исключает возможности одновременной передачи сообщений двумя или несколькими станциями. Аппаратура автоматически распознает такие конфликты. После обнаружения конфликта станции задерживают передачу на некоторое время. Это время небольшое и для каждой станции свое. После задержки передача возобновляется.

Реально конфликты приводят к уменьшению быстродействия сети только в том случае, если работает несколько десятков или сотен станций.

Метод доступа ArcNet

Этот метод разработан фирмой Datapoint Corp. Он тоже получил широкое распространение, в основном благодаря тому, что оборудование ArcNet дешевле, чем оборудование Ethernet или Token-Ring.

ArcNet используется в локальных сетях с топологией “звезда”. Один из компьютеров создает специальный маркер (сообщение специального вида), который последовательно передается от одного компьютера к другому.

Если станция желает передать сообщение другой станции, она должна дождаться маркера и добавить к нему сообщение, дополненное адресами отправителя и назначения. Когда пакет дойдет до станции назначения, сообщение будет “отцеплено” от маркера и передано станции.

Метод доступа Token-Ring

Метод доступа Token-Ring был разработан фирмой IBM и рассчитан на кольцевую топологию сети.

Этот метод напоминает ArcNet, так как тоже использует маркер, передаваемый от одной станции к другой. В отличие от ArcNet при методе доступа Token-Ring имеется возможность назначать разные приоритеты разным рабочим станциям.

Среды передачи данных, их характеристики

Коаксиальный кабель был первым типом кабеля, использованным для соединения компьютеров в сеть. Кабель данного типа состоит из центрального медного проводника, покрытого пластиковым изолирующим материалом, который, в свою очередь, окружен медной сеткой и/или алюминиевой фольгой. Этот внешний проводник обеспечивает заземление и защиту центрального проводника от внешней электромагнитной интерференции. При прокладке сетей используются два типа кабеля – “Толстый коаксиальный кабель” (Thicknet) и “Тонкий коаксиальный кабель” (Thinnet). Сети на основе коаксиального кабеля обеспечивают передачу со скоростью до 10 Мбит/с. Максимальная длина сегмента лежит в диапазоне от 185 до 500 м в зависимости от типа кабеля.

Кабель типа “витая пара” (twisted pair), является одним из наиболее распространенных типов кабеля в настоящее время. Он состоит из нескольких пар медных проводов, покрытых пластиковой оболочкой. Провода, составляющие каждую пару, закручены вокруг друг друга, что обеспечивает защиту от взаимных наводок. Кабели данного типа делятся на два класса – “экранированная витая пара” (“Shielded twisted pair”) и “неэкранированная витая пара” (“Unshielded twisted pair”). Отличие этих классов состоит в том, что экранированная витая пара является более защищенной от внешней электромагнитной интерференции, благодаря наличию дополнительного экрана из медной сетки и/или алюминиевой фольги, окружающего провода кабеля. Сети на основе “витой пары” в зависимости от категории кабеля обеспечивают передачу со скоростью от 10 Мбит/с – 1 Гбит/с. Длина сегмента кабеля не может превышать 100 м (до 100 Мбит/с) или 30 м (1 Гбит/с).

Оптоволоконные кабели представляют собой наиболее современную кабельную технологию, обеспечивающую высокую скорость передачи данных на большие расстояния, устойчивую к интерференции и прослушиванию. Оптоволоконный кабель состоит из центрального стеклянного или пластикового проводника, окруженного слоем стеклянного или пластикового покрытия и внешней защитной оболочкой. Передача данных осуществляется с помощью лазерного или светодиодного передатчика, посылающего однонаправленные световые импульсы через центральный проводник. Сигнал на другом конце принимается фотодиодным приемником, осуществляющим преобразование световых импульсов в электрические сигналы, которые могут обрабатываться компьютером. Скорость передачи для оптоволоконных сетей находится в диапазоне от 100 Мбит/c до 2 Гбит/с. Ограничение по длине сегмента составляет 2 км.

Виды локальных сетей

Локальная сеть — это компьютерная сеть, покрывающая обычно относительно небольшую территорию или небольшую группу зданий (дом, офис, фирму, институт).

Все современные локальные сети делятся на два вида:

Одноранговые локальные сети – сети, где все компьютеры равноправны: каждый из компьютеров может быть и сервером, и клиентом.Пользователь каждого из компьютеров сам решает, какие ресурсы будут предоставлены в общее пользование и кому.

Локальные сети с цетрализованным управлением. В сетях с централизованным управлением политика безопасности общая для всех пользователей сети.

Читать еще:  Колебалка незацепляйка

В зависимости от назначения и размера локальной сети применяются либо одноранговые сети, либо сети с централизованным управлением.

Основные характеристики локальной сети

В настоящее время в различных странах мира созданы и эксплуатируются различные типы ЛВС с различными размерами, топологией, алгоритмами работы, архитектурной и структурной организацией. Независимо от типа сетей, к ним предъявляются общие требования:

  • Скорость – важнейшая характеристика локальной сети;
  • Адаптируемость – свойство локальной сети расширяться и устанавливать рабочие станции там, где это требуется;
  • Надежность – свойство локальной сети сохранять полную или частичную работоспособность вне зависимости от выхода из строя некоторых узлов или конечного оборудования.

Топология локальных сетей

Под топологией (компоновкой, конфигурацией, структурой) компьютерной сети обычно понимается физическое расположение компьютеров сети друг относительно друга и способ соединения их линиями связи. Важно отметить, что понятие топологии относится, прежде всего, к локальным сетям, в которых структуру связей можно легко проследить. В глобальных сетях структура связей обычно скрыта от пользователей и не слишком важна, так как каждый сеанс связи может производиться по собственному пути.

Топология определяет требования к оборудованию, тип используемого кабеля, допустимые и наиболее удобные методы управления обменом, надежность работы, возможности расширения сети. И хотя выбирать топологию пользователю сети приходится нечасто, знать об особенностях основных топологий, их достоинствах и недостатках надо.

Существует три базовые топологии сети:

Шина (bus) — все компьютеры параллельно подключаются к одной линии связи. Информация от каждого компьютера одновременно передается всем остальным компьютерам (рис. 1).

Рис. 1. Сетевая топология шина

Звезда (star) — бывает двух основных видов:

Активная звезда (истинная звезда) – к одному центральному компьютеру присоединяются остальные периферийные компьютеры, причем каждый из них использует отдельную линию связи. Информация от периферийного компьютера передается только центральному компьютеру, от центрального — одному или нескольким периферийным. (рис. 2 )

Рис. 2. Активная звезда

Пассивная звезда, которая только внешне похожа на звезду (рис. 2). В настоящее время она распространена гораздо более широко, чем активная звезда. Достаточно сказать, что она используется в наиболее популярной сегодня сети Ethernet.

В центре сети с данной топологией помещается не компьютер, а специальное устройство — коммутатор или, как его еще называют, свитч (switch), который восстанавливает приходящие сигналы и пересылает их непосредственно получателю (рис. 3) .

Рис. 3. Пассивная звезда

Кольцо (ring) — компьютеры последовательно объединены в кольцо.

Передача информации в кольце всегда производится только в одном направлении. Каждый из компьютеров передает информацию только одному компьютеру, следующему в цепочке за ним, а получает информацию только от предыдущего в цепочке компьютера (рис. 4).

Рис. 4. Сетевая топология кольцо

На практике нередко используют и другие топологии локальных сетей, однако большинство сетей ориентировано именно на три базовые топологии.

Компьютерные сети от А до Я: классификация, стандарты и уровни

Компьютерные сети непросты в изучении, ведь технологий и протоколов много, а действительно полной информации о них мало. Что ж, будем это исправлять.

Классификация

Компьютерные сети классифицируются по:

  1. Типу коммутации.
  2. Технологии передачи.
  3. Протяженности.

По типу коммутации сети бывают:

В чем разница? В первом случае перед передачей данных устанавливается соединение. После данные перемещаются строго по установленному соединению. Наиболее популярный пример коммутации каналов – телефонная сеть.

А вот коммутация пакетов работает несколько иначе, и именно к этому типу относятся современные компьютерные сети. Данные делятся на части, также именуемые пакетами. Эти части не зависят друг от друга и передаются отдельно. Каждый пакет может проходить через сеть разными путями.

Главное преимущество второго типа – отказоустойчивость. Например, если какой-то из промежуточных узлов выйдет из строя, данные будут передаваться через доступные для этого узлы. При поступлении пакета на промежуточную точку (узел) определяется дальнейший путь: это и есть маршрутизация. Задача маршрутизации, которая описана выше, должна решаться на всех промежуточных этапах.

Разделение по технологии передачи:

  • широковещательные сети (данные, переданные в сеть, доступны всем устройствам этой сети);
  • точка-точка (передача от одного устройства к другому, иногда с наличием промежуточных узлов).

По протяженности компьютерные сети делятся на:

  • персональные;
  • локальные;
  • муниципальные;
  • глобальные;
  • объединение сетей (пример – сеть Интернет).

Рассмотрим каждую из них более подробно:

Компьютерные сети и их стандарты

Стандарты стали решением таких проблем, как несовместимость сетевого оборудования, разные протоколы и несовместимость программного обеспечения. Именно по этим причинам раньше оборудование от разных производителей не взаимодействовало посредством сети.

Читать еще:  Клев рыбы на неделю

Используется 2 типа стандартов:

  1. Dejure (юридические, формальные стандарты).
  2. De Facto (стандарты фактические).

Первые стандарты принимаются той организацией, которая имеет право их принимать (по формальным законам стандартизации). Вторые же никто целенаправленно не принимал: они установились сами собой, как происходит с новыми технологиями, резко набирающими популярность среди пользователей. Хороший пример такой технологии – стек протоколов TCP/IP, который на данный момент является основой сети Интернет.

Самыми важными стандартами являются:

  1. ISO (Международная организация по стандартизации) приняла стандарт на эталонную модель взаимодействия открытых систем.
  2. Консорциум W3C (World Wide Web Consortium) – веб-стандарты.
  3. IAB (Совет по архитектуре Интернета) – протоколы Интернет.
  4. IEEE (Институт инженеров по электронике и электротехнике) – технологии передачи информации.

Стоит отметить, что IEEE также принимает стандарты в различных областях электроники и электротехники. Разработкой для стандартов компьютерных сетей занимается их комитет под номером 802:

А вот IAB состоит из нескольких частей:

  • IRTF (Группа исследователей Интернет) – долгосрочные исследования на перспективу;
  • IETF (Группа проектирования Интернет) – занимается выпуском стандартов на сетевые протоколы;
  • RFC (запрос комментариев) – документы, описывающие работу различных протоколов (формально это не стандарты).

Используя другие протоколы, оборудование и программное обеспечение просто не смогут использоваться в сети Интернет.

Каждый из документов RFC обладает своим номером и описывает конкретный интернет-протокол:

    • RFC 791 – протокол IP;
    • RFC 792 – протокол ICMP;
    • RFC 793 – протокол TCP;
  • RFC 826 – протокол ARP;
  • RFC 2131 – протокол DHCP.

Консорциум W3C отвечает за веб-стандарты. Документы W3C формально не называются стандартами, а именуются рекомендациями.

К рекомендациям World Wide Web Consortium относятся:

Итак, стандарты предназначены для того, чтобы работать с Интернетом с любого устройства, с любой операционной системы, независимо от производителя и используемого программного обеспечения. Чтобы лучше разобраться в тонкостях работы протоколов и технологий, читайте стандарты IEEE, рекомендации W3C и документы RFC.

Продолжаем разбирать компьютерные сети и переходим к протоколам.

Уровни протоколов

Что такое «сетевые протоколы»? Здесь все просто. По сути, это набор правил, благодаря которому реализуется соединение и обмен данными между несколькими (2-мя и более) устройствами, которые относятся к какой-либо сети. Наиболее популярная система классификации этих протоколов – OSI (сетевая модель). Ее можно разбить на 7 основных уровней:

  1. Прикладной – самый верхний. Он отвечает за взаимодействие юзера и сети, делает доступными сетевые службы, а также отвечает за информацию о возможных ошибках и передачу служебных данных (POP3, HTTP, SMTP).
  2. Уровень представления работает с преобразованием протоколов, сжатием/распаковкой, а также кодированием и декодированием информации.
  3. Сеансовый полностью соответствует своему названию, так как поддерживает сеанс связи. Работает с созданием и завершением сеанса, синхронизацией задач, обменом данными, etc.
  4. Транспортный уровень отвечает за доставку переданной информации без потерь, дублирования, ошибок и в точно той же последовательности, что и нужно (как данные передаются – так они и поставляются получателю). Протоколы данного уровня работают по принципу «точка-точка». Примеры: TCP, UDP. Больше о работе TCP и других протоколов можете узнать из нашей статьи «Разбираем по косточкам компьютерные сети: HTTP, TCP, REST».
  5. Сетевой нужен, чтобы определять путь передачи данных. Отвечает за поиск кратчайших маршрутов, коммутацию и отслеживание неполадок в сети. На данном уровне работает маршрутизатор.
  6. Канальный уровень или уровень звена данных. Здесь происходит обеспечение взаимодействия сетей, но уже на физическом уровне. Полученные с физического уровня данные упаковываются во фреймы, исправляются ошибки, если это необходимо, а после информация отправляется выше – на сетевой уровень. Здесь работают коммутаторы и мосты. Примеры интерфейсов: NDIS, ODI.
  7. Физический уровень – самый нижний, для работы с передачей потока данных. Реализуется передача оптических или электрических сигналов в радиоэфир или кабель, а также их прием с дальнейшим преобразованием в биты данных. Грубо говоря, осуществляется интерфейс между сетевым носителем и сетевым устройством. Здесь работают хабы, ретрансляторы и медиаконвертеры.

К слову, модель TCP/IP во многом перекликается с приведенной выше OSI, так как функции многих уровней совпадают:

Вас также могут заинтересовать другие статьи по теме:

Ссылка на основную публикацию
Adblock
detector